Barre à section variable

Objectifs : Calcul de la matrice élémentaire d’une barre à section variable. Comparaison avec la solution analytique, convergence du modèle numérique.

Soit une éprouvette plane (plaque d’épaisseur e) soumise à un essai de traction. Les dimensions de la structure sont données par la figure ci-dessous (la section varie linéairement).

Dans cet exercice nous utiliserons un modèle 1D pour approcher l'état de contrainte dans l'éprouvette. Pour ce modèle, on étudiera la convergence de l'approximation pour une discrétisation du problème en 1 puis 2 éléments finis.

Modélisation.
Rappeler l'expression de l'énergie de déformation pour un élément de section variable de S1 à S2
Calculer la matrice raideur élémentaire.

Application
Soit une modélisation éléments finis de cette structure, peut-on résoudre le système matriciel ?
Combien de conditions aux limites faut-il introduire ?
Proposer une solution.

On décide de tenir compte de la symétrie.
Préciser les conditions aux limites à introduire sur la frontière (figure).
Ces conditions sont-elles suffisantes ?
Proposer une solution.

Pour une modélisation à 1 élément fini en tenant compte de la symétrie.
Calculer les champs approchés des déplacements et des contraintes.
Comparer à la solution analytique, les graphes sont donnés ci-dessous.

Pour un modèle à 2 éléments finis.
Calculer la nouvelle approximation des champs des déplacements et des contraintes.
Comparer à la solution analytique

Le fichier Maple vous permettra de tracer les courbes adimensionnelles de la solution analytique.

Courbe en fonction de
Courbe en fonction de